
Accelerating Direct Linear Solvers with Algorithmic and
Hardware Advances

Xiaoye Sherry Li

xsli@lbl.gov

Lawrence Berkeley National Laboratory

SIAM Conference on Applied Linear Algebra, Oct. 26-30, 2015

Acknowledgements

Pieter Ghysels LBNL
Xing Liu IBM Watson Research Center
Artem Napov Université Libre de Bruxelles
François-Henry Rouet LBNL
Piyush Sao Georgia Tech
Richard Vuduc Georgia Tech
Sam Williams LBNL
Rio Yokota Tokyo Institute of Technology

The work is partially supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research of the US Department of Energy
under contract no. DE-AC02-05CH11231.

Themes

Many research areas for exascale computing:

• Algorithms with lower arithmetic complexity, lower communication
complexity

Multilevel algorithms
• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM, (hopefully)

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization

• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators, co-processors

Themes

Many research areas for exascale computing:

• Algorithms with lower arithmetic complexity, lower communication
complexity
Multilevel algorithms

• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM, (hopefully)

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization

• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators, co-processors

Themes

Many research areas for exascale computing:

• Algorithms with lower arithmetic complexity, lower communication
complexity
Multilevel algorithms

• Multigrid
• Fast Multipole Method (FMM)
• Hierarchical matrices – algebraic generalization of FMM, (hopefully)

applicable to broader classes of problems

• Parallel algorithms and codes for machines with million-way
parallelism, hierarchical organization

• Distributed memory
• Manycore nodes: 100s of lightweight cores, accelerators, co-processors

Reduce complexity with hierarchical matrix algorithms

Exploit STRUCTURES

1 Sparsity structure: defined by {0,1} structure (Graphs).
LU factorizaion ∼ O(N2) flops, for many 3D discretized PDEs
(loosely speaking).

Software:
• SPARSPAK (1981, George and Liu)
• YSMP (1982, Eisenstat)
• MA27 multifrontal (1983, Duff and Reid, MA37, MA38, MA47, MA57

etc. in HSL)
• MUMPS, PaStiX, SuperLU, UMFPACK, WSMP, ...

Exploit STRUCTURES

1 Sparsity structure: defined by {0,1} structure (Graphs).
LU factorizaion ∼ O(N2) flops, for many 3D discretized PDEs
(loosely speaking).

Software:
• SPARSPAK (1981, George and Liu)
• YSMP (1982, Eisenstat)
• MA27 multifrontal (1983, Duff and Reid, MA37, MA38, MA47, MA57

etc. in HSL)
• MUMPS, PaStiX, SuperLU, UMFPACK, WSMP, ...

Exploit STRUCTURES – low rankness

2 On top of (1), can find Data-sparse structure in dense (sub)matrices
(approximation)
O(N) or O(N polylog(N)) flops for compression, factorization.

Hierarchical matrices: H- & H2-matrix (1999, Hackbusch et al.) and
their subclasses.

[Bebendorf, Bini, Börm, Chandrasekaran, Darve, Dewilde, Grasedyck,
Gu, Le Borne, Martinsson, Tygert, Van Barel, van der Veen, Vandebril,
Xia, ...]

Software:
• HLib (2004, Börm and Grasedyck)
• HLIBPro (2004, Kriemann)
• HODLR (2013, Ambikasaran and Darve)
• MUMPS (2015, Amestoy et al.)
• STRUMPACK (2015, LBNL)

Exploit STRUCTURES – low rankness

2 On top of (1), can find Data-sparse structure in dense (sub)matrices
(approximation)
O(N) or O(N polylog(N)) flops for compression, factorization.

Hierarchical matrices: H- & H2-matrix (1999, Hackbusch et al.) and
their subclasses.

[Bebendorf, Bini, Börm, Chandrasekaran, Darve, Dewilde, Grasedyck,
Gu, Le Borne, Martinsson, Tygert, Van Barel, van der Veen, Vandebril,
Xia, ...]

Software:
• HLib (2004, Börm and Grasedyck)
• HLIBPro (2004, Kriemann)
• HODLR (2013, Ambikasaran and Darve)
• MUMPS (2015, Amestoy et al.)
• STRUMPACK (2015, LBNL)

Hierarchical matrix approximation

• Same mathematical foundation as FMM (Greengard and Rokhlin),
put in matrix form:

• Diagonal block (“near field”) represented exactly
• Off-diagonal block (“far field”) approximated via low-rank format

FMM Algebraic
separability of Green’s function low rank off-diagonal

G (x , y) ≈
∑r

`=1 f`(x)g`(y) A =

[
D1 U1B1V

T
2

U2B2V
T
1 D2

]
x ∈ X , y ∈ Y

• Algebraic power: matrix multiplication, factorization, inversion,
tensors, ...

Multilevel is the key to optimal complexity

Two hierarchies:

• Hierarchical partitioning using cluster tree

• Hierarchical, nested bases

1. Cluster tree, block cluster tree

Cluster tree TI defines hierarchical partitioning of the index set [1, n].

• Each node is associated with an interval Iτ .

• For children ν1 and ν2, parent Iτ = Iν1 ∪ Iν2 , and Iν1 ∩ Iν2 = ∅

0

1

3 4

2

5 6

[1, n]

[1, n2] [n2 , n]

[1, n4] [n4 + 1, n2] [n2 + 1, 3n
4] [3n

4 + 1, n]

1. Cluster tree, block cluster tree

Cluster tree TI defines hierarchical partitioning of the index set [1, n].

• Each node is associated with an interval Iτ .

• For children ν1 and ν2, parent Iτ = Iν1 ∪ Iν2 , and Iν1 ∩ Iν2 = ∅

0

1

3 4

2

5 6

[1, n]

[1, n2] [n2 , n]

[1, n4] [n4 + 1, n2] [n2 + 1, 3n
4] [3n

4 + 1, n]

1. Cluster tree, block cluster tree

Cluster tree TI defines hierarchical partitioning of the index set [1, n].

• Each node is associated with an interval Iτ .

• For children ν1 and ν2, parent Iτ = Iν1 ∪ Iν2 , and Iν1 ∩ Iν2 = ∅

0

1

3 4

2

5 6

[1, n]

[1, n2] [n2 , n]

[1, n4] [n4 + 1, n2] [n2 + 1, 3n
4] [3n

4 + 1, n]

1. Cluster tree, block cluster tree

Cluster tree TI defines hierarchical partitioning of the index set [1, n].

• Each node is associated with an interval Iτ .

• For children ν1 and ν2, parent Iτ = Iν1 ∪ Iν2 , and Iν1 ∩ Iν2 = ∅

0

1

3 4

2

5 6

[1, n]

[1, n2] [n2 , n]

[1, n4] [n4 + 1, n2] [n2 + 1, 3n
4] [3n

4 + 1, n]

Block cluster tree TI×J defines partitioning of the index set I × J , both
row- and column-wise.

• Each node corresp. to a matrix block A(Iτ , Iσ)

2. Nested bases

Example: Hierarchically Semi-Separable matrices (HSS)

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

• Diagonal blocks are full rank: Dτ = A(Iτ , Iτ)

• Off-diagonal blocks as low-rank:

Aν1,ν2 = A(Iν1 , Iν2) = Uν1Bν1,ν2V
∗
ν2

• Column bases U and row bases V ∗ are nested:

Uτ =

[
Uν1 0
0 Uν2

]
Usmall
τ ,Vτ =

[
Vν1 0
0 Vν2

]
V small
τ

HSS matrix – operational view

A(`) = U(`)A(`−1)V (`)T + B(`), levels ` = 1, 2, . . . , L

Data structures built on cluster tree (i.e. HSS tree):

• Keep as an unevaluated product & sum

• Operations going up / down the cluster tree

HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t


I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6


[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=



L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t



Families of H and H2 matrices

• Admissibile block (τ, σ): max{diam(τ), diam(σ)} ≤ η dist(τ, σ)

• Strong admissibility: blocks next to diagonal not compressed, only
compress well separated blocks

• H : split a node in a block cluster tree if its block is admissible

• H2 : uniform H partitioning, with nested bases

[Börn/Grasedyck/Hackbusch]

Families of H and H2 matrices

• Admissibile block (τ, σ): max{diam(τ), diam(σ)} ≤ η dist(τ, σ)

• Strong admissibility: blocks next to diagonal not compressed, only
compress well separated blocks

• H : split a node in a block cluster tree if its block is admissible

• H2 : uniform H partitioning, with nested bases

[Börn/Grasedyck/Hackbusch]

Various data-sparse formats

Method Hier. part. Nested bases Admissibility Family

HODLR yes no weak H
HSS/HBS yes yes weak H2

Barnes-Hut yes no strong H
FMM yes yes strong H2

BLR no no strong

Various data-sparse formats

HODLR HSS BLR

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

Barnes-Hut FMM

Various data-sparse formats

HODLR HSS BLR

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

Barnes-Hut FMM

Practical comparisons ... two other talks

• Francois-Henry Rouet, MS39, Thursday, 11:45-12:10
“A Comparison of Different Low-Rank Approximation Techniques”

• Rio Yokota, MS45, Thursday, 3:30-3:55
“Comparison of FMM and HSS at Large Scale”

Low rank compression via randomized sampling

1 Pick random matrix Ωn×(k+p), p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S)

• Accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

• Cost: O(kmn)

N. Halko,P.G. Martinsson, J.A. Tropp, “Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decomposition”, SIAM Review, Vol.53,
pp.217-288, 2011.

Low rank compression via randomized sampling

1 Pick random matrix Ωn×(k+p), p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S)

• Accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

• Cost: O(kmn)

N. Halko,P.G. Martinsson, J.A. Tropp, “Finding Structure with Randomness: Probabilistic
Algorithms for Constructing Approximate Matrix Decomposition”, SIAM Review, Vol.53,
pp.217-288, 2011.

RS vs. “direct” methods (RRQR, truncated SVD)

• When using explicit matrix, all have same asymptotic cost.

• RS can be faster when fast matvec available:
• FMM (O(kn))
• Structured random matrix, e.g. SRFT (Subsampled Random Fourier

Transform) (O(log(k)mn))

• RS useful when only matvec available (matrix-free).

• In sparse solver, RS is more appealing ...

Embedding HSS in multifrontal sparse solver

Approximate frontal matrices with HSS

• Only for top `s levels in the elimination tree,
largest frontal matrices

• ULV factorization of HSS matrix

• Low-rank Schur complement update
HSS
dense

Sparse multifrontal: Extend-Add Fj = Aj l↔ Uc1
l↔ Uc1

Uc1 + Uc2 =

 a1 b1 0
c1 d1 0
0 0 0

+

 a2 0 b2

0 0 0
c2 0 d2

 =

 a1 + a2 b1 b2

c1 d1 0
c2 0 d2



Main obstacle:
extend-add of two HSS structures

Hsolver [Wang/Rouet/Xia/L. 2013]

Compromise:

• keep update matrix as dense

• extend-add dense

Sparse multifrontal: Extend-Add Fj = Aj l↔ Uc1
l↔ Uc1

Uc1 + Uc2 =

 a1 b1 0
c1 d1 0
0 0 0

+

 a2 0 b2

0 0 0
c2 0 d2

 =

 a1 + a2 b1 b2

c1 d1 0
c2 0 d2



Main obstacle:
extend-add of two HSS structures

Hsolver [Wang/Rouet/Xia/L. 2013]

Compromise:

• keep update matrix as dense

• extend-add dense

RS simplies frontal extend-add

Skinny extend-merge:

Arithmetic complexities – dense HSS

Let r = HSS rank, i.e., maximum rank found during the different
compression steps.

Compression

• Without RS: O(r N2).

• With RS: cost of sampling + O(r2N)
• Classical matvec: O(r N2).
• FFT (e.g., Toeplitz matrix): O(r N logN).
• FMM: O(r N).

ULV factorization and solve: O(r N)

Arithmetic complexities – dense HSS

Let r = HSS rank, i.e., maximum rank found during the different
compression steps.

Compression

• Without RS: O(r N2).

• With RS: cost of sampling + O(r2N)
• Classical matvec: O(r N2).
• FFT (e.g., Toeplitz matrix): O(r N logN).
• FMM: O(r N).

ULV factorization and solve: O(r N)

Arithmetic complexities – sparse solver w/ HSS embedding

Rank patterns for discretized PDEs on kd mesh: [Chandrasekaran et al.’10,

Enquist/Ying’11, Enquist/Zhao ’14]

2D 3D

Poisson O(1) O(k)
Helmholtz O(log k) or O(k) O(k)

Solver complexities:

3D Helmholtz cost: [Xia ’13] (seems true for many PDEs)

Mem Flops

MF-HSS O(N logN) O(N4/3 logN)

MF-HSS + RS O(N) O(N logN)

Distributed-memory parallel algorithm

Use HSS tree to help data distribution

Multilevel parallelism in sparse MF-HSS solver

Elimination tree, HSS tree, BLAS tree

Node of etree

Node of HSS tree

Node of dense kernels tree

1

Dense – communication analysis

Number of messages and volume of communication on the critical path
(for 1 process):

Algorithm Messages Words

ScaLAPACK LU O(n log p) O
(
n2 log p√

p

)
Randomized O(p log p + r log p + r log2 p) O

(
n2

p + rn√
p + r2

)
HSS compression Redist Sampling Tree Redist Sampling Tree

• Further reduce communication? Lower bound?

STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• C++, OpenMP, MPI

• Support both real & complex datatypes, single & double precision
(via template), and 64-bit indexing.

• Input interfaces:
• Dense matrix in standard format.
• Matrix-free
• Sparse matrix in CSR format.

• Can take user input: cluster tree & block partition

• Functions:
• HSS construction, HSS-vector product, ULV factorization, Solution.

• Public domain, BSD license.

• Extensible to include other data-sparse formats.

http://portal.nersc.gov/project/sparse/strumpack/

STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• C++, OpenMP, MPI

• Support both real & complex datatypes, single & double precision
(via template), and 64-bit indexing.

• Input interfaces:
• Dense matrix in standard format.
• Matrix-free
• Sparse matrix in CSR format.

• Can take user input: cluster tree & block partition

• Functions:
• HSS construction, HSS-vector product, ULV factorization, Solution.

• Public domain, BSD license.

• Extensible to include other data-sparse formats.

http://portal.nersc.gov/project/sparse/strumpack/

Making software robust

• Adaptive sampling machinery
• Automatic handling unknown rank patterns: incrementally adjust

sample size at any node when rank revealed is too large.

• Non-uniform clustering & partitioning

(a) Matrix structure.

64

16

4

2 2

12

48

(b) Weighted process map-
ping

Making software robust

• Adaptive sampling machinery
• Automatic handling unknown rank patterns: incrementally adjust

sample size at any node when rank revealed is too large.

• Non-uniform clustering & partitioning

(c) Matrix structure.

64

16

4

2 2

12

48

(d) Weighted process map-
ping

Matrix-free interface

• Toeplitz: matvec via FFT

Quantum chemistry: ai ,i = π2

6 , ai ,j = (−1)i−j

(i−j)2d2

• Previous best Toeplitz linear solver (e.g. Levinson): O(n2)

16000 32000 64000 128000 256000 370000
n

10−1

100

101

102

103

104

105

Ti
m

e
(s

)

Quantum Chemistry Toeplitz matrix, 64 MPI, compression+factorization+solve

HSS-FFT

n log2 n

HSS-GEMM
n2

LU
n3

Parallel weak scaling

Root node of the multifrontal factorization of a discretized Helmholtz
problem (frequency domain, PML boundary, 10Hz).

k (3D mesh: k3) 100 200 300 400 500
Matrix size (=k2) 10,000 40,000 90,000 160,000 250,000
Cores 64 256 1,024 4,096 8,192

Maximum rank 313 638 903 1289 1625
Compression time 2.0 13.0 30.6 60.8 133.6

Speed-up over ScaLAPACK 1.8 4.0 5.4 4.8 3.9
Flops ratio 0.6 18.8 132.7 626.1 1716.7

Load imbalance

Parallel weak scaling

Root node of the multifrontal factorization of a discretized Helmholtz
problem (frequency domain, PML boundary, 10Hz).

k (3D mesh: k3) 100 200 300 400 500
Matrix size (=k2) 10,000 40,000 90,000 160,000 250,000
Cores 64 256 1,024 4,096 8,192

Maximum rank 313 638 903 1289 1625
Compression time 2.0 13.0 30.6 60.8 133.6

Speed-up over ScaLAPACK 1.8 4.0 5.4 4.8 3.9
Flops ratio 0.6 18.8 132.7 626.1 1716.7

Load imbalance

Parallel performance of sparse MF-HSS solvers

Cray XC30, Edison at NERSC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

P
A

R
D

IS
O

M
F

 (M
T

)

M
F

+H
SS

(M
T

)

M
F

(M
P

I)

M
F

+H
SS

(M
P

I)

P
A

R
D

IS
O

M
F

(M
T

)

M
F

+H
SS

(M
T

)

M
F

(M
P

I)

M
F

+H
SS

(M
P

I)

P
A

R
D

IS
O

M
F

(M
T

)

M
F

+H
SS

(M
T

)

M
F

(M
P

I)

M
F

+H
SS

(M
P

I)

P
A

R
D

IS
O

M
F

(M
T

)

M
F

+H
SS

(M
T

)

M
F

(M
P

I)

M
F

+H
SS

(M
P

I)

ou
t

of
 m

em
or

y

no
rm

al
iz

ed
 t

im
e

(M
F

=1
)

Pardiso (12 threads), MF/MF+HSS with 12 OpenMP threads and MF/MF+HSS with 12 MPI processes

reorder time
factor time
solve time

torso3Serenanlpkkt80atmosmodd

• Compared to PARDISO in Intel MKL library (12 threads)

• OpenMP (12 threads): MF, MF-HSS

• MPI (12 tasks): MF, MF-HSS

Further details ...

• Pieter Ghysels, MS51, Friday, 11:45-12:10
“A Parallel Multifrontal Solver and Preconditioner Using
Hierarchically Semiseparable Structured Matrices”

New parallel algorithms tracking architecture advances

Evolution of parallel machines, programming

• Vector machines, program with vectorization directives

• Shared memory UMA, program with directives or explicit threading

• Distributed memory machines presented major challenges
• Data distribution, locality
• Program with explicit messages, e.g., MPI

• Recently, heterogeneous node architectures, more disruptive
• NUMA, socket / core / vector unit; accelerator / co-processor (e.g.,

GPU)
• Memory per core is small
• Program with mixed MPI & threads & CUDA ...

Mixing task parallelism and data parallelism.

Evolution of parallel machines, programming

• Vector machines, program with vectorization directives

• Shared memory UMA, program with directives or explicit threading

• Distributed memory machines presented major challenges
• Data distribution, locality
• Program with explicit messages, e.g., MPI

• Recently, heterogeneous node architectures, more disruptive
• NUMA, socket / core / vector unit; accelerator / co-processor (e.g.,

GPU)
• Memory per core is small
• Program with mixed MPI & threads & CUDA ...

Mixing task parallelism and data parallelism.

Variety of node architectures

Titan at ORNL:
16-core AMD + K20X GPU

Programming:

• Separate CPU/GPU programs

• Transfer data between them

Intel Xeon Phi KNL (2016)

• 72 cores

• 4 threads/core

• 2 512bit vector units/core

Variety of node architectures

Titan at ORNL:
16-core AMD + K20X GPU

Programming:

• Separate CPU/GPU programs

• Transfer data between them

Intel Xeon Phi KNL (2016)

• 72 cores

• 4 threads/core

• 2 512bit vector units/core

SuperLU DIST
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

A widely used open-source sparse direct solver library [LBNL/UC Berkeley]

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3 0 1 2

3 4 5

Process

Grid
A(k:ns,k)

A(k,k+1:ns)

Schur-Complement Matrix

Non-zeros
 Blocks

Algorithms

• Right looking

• Static pivoting

• 2D Cyclic data distribution

Two Major computational phases

1 Panel Factorization

2 Schur-Complement Update

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Schur-complement udate

• Over 80% factorization time, ample parallelism

• Two operations: GEMM, Gather/Scatter

L:,k

}

L:,k V

Uk,:
~

V L:,kUk,:
~

GEMM-Phase Scatter-Phase

Uk,:}

Design questions for accelerator / co-processor

• Only use accelerator, or use CPU as well?
Accelerator memory small
→ best to use both (offload some computations to GPU)

• What to offload?
Panel factorization not suitable for fine-grained data-parallel model
→ offload only Schur complement update

• Schur complement update: GEMM, and Gather/Scatter?
• GEMM only compute intensive [Sao/Vuduc/L. 2014]
• Both GEMM and Gather/Scatter indirect addressing, memory

intensive [Sao/Liu/Vuduc/L. 2015]

Overlap activities on both CPU/GPU to hide transfer latency over PCIe
bus (10-15 microseconds)

Design questions for accelerator / co-processor

• Only use accelerator, or use CPU as well?
Accelerator memory small
→ best to use both (offload some computations to GPU)

• What to offload?
Panel factorization not suitable for fine-grained data-parallel model
→ offload only Schur complement update

• Schur complement update: GEMM, and Gather/Scatter?
• GEMM only compute intensive [Sao/Vuduc/L. 2014]
• Both GEMM and Gather/Scatter indirect addressing, memory

intensive [Sao/Liu/Vuduc/L. 2015]

Overlap activities on both CPU/GPU to hide transfer latency over PCIe
bus (10-15 microseconds)

HALO algorithm – Highly Asynchronous Lazy Offload

• Maintain two partial sums of Schur-complement on both CPU and
GPU, selectively offload Schur updates

• Aφ has the same sparsity structure as A (2x memory duplicate)
• Part of Schur update on CPU, part on GPU

• Reduce to-be-factorized panel on CPU, absorbing GPU’s panel.

n ns

A

n nsk

A
A

(:,
k+

1
)

L(
k)

L(
k)

A
 (:

,k
+

1
)

A(k+1,:) A (k+1,:)

U(k) U (k)

2-3x performance gains on 1000+ nodes GPU cluster Titan at ORNL
2-5x reduction in memory footprint

HALO algorithm – Highly Asynchronous Lazy Offload

• Maintain two partial sums of Schur-complement on both CPU and
GPU, selectively offload Schur updates

• Aφ has the same sparsity structure as A (2x memory duplicate)
• Part of Schur update on CPU, part on GPU

• Reduce to-be-factorized panel on CPU, absorbing GPU’s panel.

n ns

A

n nsk

A
A

(:,
k+

1
)

L(
k)

L(
k)

A
 (:

,k
+

1
)

A(k+1,:) A (k+1,:)

U(k) U (k)

2-3x performance gains on 1000+ nodes GPU cluster Titan at ORNL
2-5x reduction in memory footprint

Further details ...

• Piyush Sao, MS48, Thursday, 4:00-4:25
“A Sparse Direct Solver for Distributed Memory GPU and Xeon Phi
Accelerated Systems”

Other sparse factorization GPU work:

• PARDISO: left-looking sparse LU, offload BLAS
[Schenk/Christen/Burkhart, 2008]

• WSMP: multifrontal sparse Cholesky, offload BLAS [George et al.,

2011]

• Multifrontal sparse Cholesky, offload frontal matrix computation
[Krawezik and Poole 2009, Vuduc et al. 2011, Yu/Wang/Pierce 2011]

• Threading, offload large frontal matrix computation [Lucas et al., 2010]

• Sparse multifrontal QR: offload subtrees of the assembly tree
[Yeralan/Davis/Ranka, 2013]

Further details ...

• Piyush Sao, MS48, Thursday, 4:00-4:25
“A Sparse Direct Solver for Distributed Memory GPU and Xeon Phi
Accelerated Systems”

Other sparse factorization GPU work:

• PARDISO: left-looking sparse LU, offload BLAS
[Schenk/Christen/Burkhart, 2008]

• WSMP: multifrontal sparse Cholesky, offload BLAS [George et al.,

2011]

• Multifrontal sparse Cholesky, offload frontal matrix computation
[Krawezik and Poole 2009, Vuduc et al. 2011, Yu/Wang/Pierce 2011]

• Threading, offload large frontal matrix computation [Lucas et al., 2010]

• Sparse multifrontal QR: offload subtrees of the assembly tree
[Yeralan/Davis/Ranka, 2013]

Summary

• Sparse matrices can be made sparser by combining structural sparsity
with data sparsity.

• Good ordering and hierarchical clustering / partitioning
• Alternative rank-revealing procedures
• Dynamic load balancing

• Need redesign known algorithms, refactor existing codes for new
architectures.

THANK YOU !

